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ABSTRACT Often the most robust and e�cient algorithms for the so-

lution of large-scale problems involving nonlinear PDEs and optimization

require the computation of derivative quantities. We examine the use of

automatic di�erentiation (AD) to provide code for computing �rst and

second derivatives in conjunction with two parallel numerical toolkits, the

Portable, Extensible Toolkit for Scienti�c Computing (PETSc) and the

Toolkit for Advanced Optimization (TAO). We discuss how the use of

mathematical abstractions for vectors and matrices in these libraries facili-

tates the use of AD to automatically generate derivative codes and present

performance data demonstrating the suitability of this approach.

1 Introduction

As the complexity of advanced computational science applications has in-

creased, the use of object-oriented software methods for the development

of both applications and numerical toolkits has also increased. The migra-

tion toward this approach can be attributed in part to encapsulation of

data and algorithms and code reusability provided by well-designed ob-
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jects and object toolkits. Such toolkits enable developers to focus on a

small component of a complex system, rather than attempting to develop

and maintain a monolithic application. Furthermore, code reuse justi�es

expending signi�cant e�ort in the development of highly optimized object

toolkits encapsulating expert knowledge.

Many high-performance numerical toolkits include components designed

to be combined with an application-speci�c nonlinear function. Examples

include optimization components, nonlinear equation solvers, and di�eren-

tial algebraic equation solvers. Often the numerical methods implemented

by these components also require �rst and possibly second derivatives of

the function. Frequently, the toolkit is able to approximate these deriva-

tives by using �nite di�erences (FD); however, the convergence rate and

robustness are often improved if the derivatives are computed analytically.

This represents an ideal situation for using automatic di�erentiation

(AD) [Gri89, Gri00]. Developing correct parallel code for computing the

derivatives of a complicated nonlinear function can be an onerous task,

making an automated alternative quite attractive. Furthermore, the well-

de�ned interfaces used by object toolkits simplify automatic di�erentiation

by removing the need for the programmer to identify the independent and

dependent variables and/or write code for the initialization of seed matri-

ces.

We examine the use of automatic di�erentiation to provide code for com-

puting �rst and second derivatives in conjunction with two numerical toolk-

its, the Portable, Extensible Toolkit for Scienti�c Computing (PETSc) and

the Toolkit for Advanced Optimization (TAO).We describe how AD can be

used with these toolkits to generate the code for computing the derivatives

automatically. We present results demonstrating the suitability of AD and

PETSc for the parallel solution of nonlinear PDEs and mention preliminary

results from the use of AD with TAO.

2 Portable, Extensible Toolkit for Scienti�c
Computing

PETSc [BGMS97, BGMS00] is a suite of data structures and routines for

the scalable solution of scienti�c applications modeled by partial di�er-

ential equations. The software integrates a hierarchy of components that

range from low-level distributed data structures for vectors and matrices

through high-level linear, nonlinear, and timestepping solvers. The algo-

rithmic source code is written in high-level abstractions so that it can be

easily understood and modi�ed. This approach promotes code reuse and


exibility and, in many cases, helps to decouple issues of parallelism from

algorithm choices.

Newton-based methods (see, e.g., [NW99]), which o�er the advantage of
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rapid convergence when an iterate is near to a problem's solution, form the

algorithmic core of the nonlinear solvers within PETSc. The methods em-

ploy line search, trust region, and pseudo-transient continuation strategies

to extend the radius of convergence of the Newton techniques, and often

solve the linearized systems inexactly with preconditioned Krylov meth-

ods. The basic Newton method requires the Jacobian matrix, J = F 0(u),

of a nonlinear function F (u). Matrix-free Newton-Krylov methods require

Jacobian-vector products, F 0(u)v, and may require an approximate Jaco-

bian for preconditioning.

3 Toolkit for Advanced Optimization

TAO [BMM99, BMM00] focuses on scalable optimization software, includ-

ing nonlinear least squares, unconstrained minimization, bound constrained

optimization, and general nonlinear optimization. The TAO optimization

algorithms use high-level abstractions for matrices and vectors and empha-

size the reuse of external tools where appropriate, including support for

using the linear algebra components provided by PETSc and related tools.

Many of the algorithms employed by TAO require �rst and sometimes

second derivatives. For example, unconstrained minimization solvers that

require the gradient, f 0(u), of an objective function, f(u), include a limited-

memory variable metric method and a conjugate gradient method, while

solvers that require both the gradient, f 0(u), and Hessian, f 00(u), (or Hes-

sian-vector products) include line search and trust region variants of New-

ton methods. In addition, algorithms for nonlinear least squares and con-

strained optimization often require the Jacobian of the constraint functions

or at least the computation of Jacobian-vector and Jacobian-transpose-

vector products.

4 Using Automatic Di�erentiation

The automatic di�erentiation tools used in this research are the ADI-

FOR (Automatic Di�erentiation of Fortran) [BCKM96] and ADIC (AD

of C) [BRM97] systems. Given code for a function f(u) in Fortran 77 or

ANSI C, these tools generate code for the computation of f 0(u) and, if

desired, f 00(u).

5 Experimental Results

Other work [LP99, FMM98, Ger00, LH00] has demonstrated the bene�ts of

well-de�ned interfaces for automating the AD process. The object-oriented
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FIGURE 1. Schematic diagram of the use of automatic di�erentiation tools to

generate the Jacobian routine for a nonlinear PDE computation.

designs of PETSc and TAO lead to such well-speci�ed interfaces. However,

rather than exploit this feature directly, we have chosen to take advantage

of the structure of a typical PETSc/TAO nonlinear function evaluation to

simplify the AD process. The parallel nonlinear function code usually in-

cludes several calls to PETSc/TAO routines for generalized vector scatters

before and after the actual local function computation. These calls take

care of data structure setup and communication, enabling a completely

local function computation. In the current semi-automatic approach, il-

lustrated in Figure 1, we di�erentiate this local function using AD. This

produces code for local derivative computation, which is coupled with code

for assembling the gradient, Jacobian, or Hessian. While in principle it

is possible to di�erentiate through the parallel scatter and assembly rou-

tines [Car, FD99, Hov97, HB98], currently the corresponding seed-matrix

initialization and assembly code are generated manually. Future develop-

ment will automate this process.

We present experimental results for nonlinear PDEs and unconstrained

minimization problems that demonstrate the utility of AD in conjunction

with parallel numerical libraries. These computations were run on an IBM

SP with 120 MHz P2SC nodes with two 128 MB memory cards each and a

TB3 switch. We have observed analogous qualitative behavior on a range

of other current parallel architectures.

5.1 Using AD and PETSc for Nonlinear PDEs

We used AD and PETSc to solve the steady-state, three-dimensional com-

pressible Euler equations on mapped, structured meshes using a second-
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FIGURE 2. Comparison of convergence using matrix-free Newton-Krylov-

-Schwarz methods with �nite di�erencing (FD), automatic di�erentiation (AD),
and hybrid variants (FD/AD) with various switching parameters, s. Iterations

(left) and time (right).

order, Roe-type, �nite-volume discretization. In particular, we solved in

parallel a system of the form F (u) = 0, where F : <n ! <n, using
matrix-free Newton-Krylov-Schwarz algorithms with pseudo-transient con-

tinuation to model transonic 
ow over an ONERA M6 airplane wing. See

[GKMT98] for details about the problem formulation and algorithmic ap-

proach. The linearized Newton correction equations were solved by us-

ing restarted GMRES preconditioned with the restricted additive Schwarz

method with one degree of overlap.

As discussed in depth in [HM00] and summarized in Figure 2, our results

indicate that, within the context of matrix-free Newton-Krylov methods,

AD o�ers signi�cantly greater robustness and converges in fewer iterations

than FD. This �gure plots convergence rate in terms of the residual norm

kF (u)k2 versus both nonlinear iteration number and computation time on

four processors for a model problem of dimension 158,760. The runtime for

AD is slightly higher than for FD (when an appropriate di�erencing stepsize

is used), due to the higher cost of computing Jacobian-vector products

using AD. However, coupling AD with FD in a hybrid scheme provides the

robustness of AD with the lower computation time of FD, without needing

to identify the proper stepsize for FD. Additional experiments show that

this hybrid technique scales well for various problem sizes and processor

con�gurations [HM00].

5.2 Using AD and TAO for Unconstrained Minimization

We evaluated the preliminary performance of automatic di�erentiation in

conjunction with TAO using a two-dimensional elastic-plastic torsion model

from the MINPACK-2 test problem collection [ACMX92]. This model uses

a �nite element discretization to compute the stress �eld on an in�nitely

long cylindrical bar to which a �xed angle of twist per unit length has
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TABLE 1.1. Execution times (sec) for various stages of the elastic-plastic torsion

minimization problem.

Number of Processors 1 16 32

Number of Vertices 10,000 160,000 320,000

Hessian Computation Method FD AD FD AD FD AD

Linear System Solution 1.19 1.20 7.10 7.04 9.16 9.04

Compute Function 0.01 0.01 0.04 0.02 0.04 0.02

Compute Gradient 0.21 0.20 0.22 0.24 0.23 0.24
Compute Hessian 1.89 1.48 3.86 1.58 6.11 1.65

Total Time 5.20 4.86 14.13 11.87 18.73 14.32
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FIGURE 3. Comparison of total execution times for the elastic-plastic torsion
minimization problem using a line search Newton method. Fixed local (left) and

�xed global (right) problem sizes.

been applied. The resulting unconstrained minimization problem can be

expressed as min f(u), where f : <n� > <. All of the following numer-

ical experiments use a line search Newton method with a preconditioned

conjugate gradient linear solver.

We compared two approaches for computing the full Hessian of f(u).

First, we applied AD to the hand-coded routine computing the analytic

gradient of f(u). Second, we used FD to approximate the Hessian, again

using the analytic gradient of f(u). In both cases we employed graph col-

oring techniques in order to exploit the sparsity of the Hessian computa-

tion [CM83, GT84]. The graphs in Figure 3 show the scaling of the complete

minimization problem using either no preconditioning or a block Jacobi

preconditioner. The block Jacobi preconditioner uses a subdomain solver

of ILU(0) on each block, with one block per processor. For this relatively

simple problem, both AD and FD exhibit rapid convergence in terms of

number of iterations. However, AD outperforms FD in terms of total time

to solution, mainly because of the good scalability of the AD Hessian com-

putation. Overall, the results for a �xed local 100� 100 mesh size indicate

that the problem does not scale well for either AD or FD (although us-
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ing a block Jacobi preconditioner helps somewhat). This situation is due

in part to the poor performance scaling of the linear system solution (see

Table 1.1). We are currently exploring the causes of this poor scalability.
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FIGURE 4. Comparison of sparse Hessian evaluation times for a �xed local prob-

lem size (10,000) using a line search Newton method and a block Jacobi precon-
ditioner with FD and AD.

Figure 4 contains the time for a single Hessian evaluation, normalized

by the time for a single gradient evaluation. The AD Hessian computation

scales very well for the problem and machine sizes in our experiments, while

FD with coloring fails to achieve good parallel performance. We attribute

the poor scalability of FD to the collective operations used in the FD step-

size determination. Even on one processor, AD o�ers superior performance;

this could be due to better cache performance because of increased data and

temporal locality. Further investigations are necessary to fully understand

the sources of the AD performance advantage.

6 Summary and Future Work

We have presented a methodology for using AD to compute �rst and second

derivatives for use in the parallel solution of nonlinear PDEs and optimiza-

tion. The robustness and, in some cases, performance of the resulting code

are superior to results with �nite di�erence approximations. Also, in con-

trast to hand-coding, AD can easily be re-applied if the nonlinear function

changes.

Future work includes moving from a semi-automatic approach to an ap-

proach, in which code for seed matrix initialization and derivative matrix

assembly are completely automated. This task will be aided by the existence

of well-de�ned interfaces for the nonlinear function component and will

leverage work on developing a di�erentiated version of PETSc [HNRS98].
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